An n-bit Binary Adder

We have seen above that single 1-bit binary adders can be constructed from basic logic gates. But what if we wanted to add together two n-bit numbers, then n number of 1-bit full adders need to be connected or "cascaded" together to produce what is known as a Ripple Carry Adder.

A "ripple carry adder" is simply " n ", 1-bit full adders cascaded together with each full adder representing a single weighted column in a long binary addition. It is called a ripple carry adder because the carry signals produce a "ripple" effect through the binary adder from right to left, (LSB to MSB).

For example, suppose we want to "add" together two 4-bit numbers, the two outputs of the first full adder will provide the first place digit sum (S) of the addition plus a carry-out bit that acts as the carry-in digit of the next binary adder.

The second binary adder in the chain also produces a summed output (the 2nd bit) plus another carry-out bit and we can keep adding more full adders to the combination to add larger numbers, linking the carry bit output from the first full binary adder to the next full adder, and so forth. An example of a 4-bit adder is given below.

A 4-bit Ripple Carry Adder

One main disadvantage of "cascading" together 1-bit binary adders to add large binary numbers is that if inputs A and B change, the sum at its output will not be valid until any carryinput has "rippled" through every full adder in the chain because the MSB (most significant bit) of the sum has to wait for any changes from the carry input of the LSB (less significant bit). Consequently, there will be a finite delay before the output of the adder responds to any change in its inputs resulting in a accumulated delay.

When the size of the bits being added is not too large for example, 4 or 8 bits, or the summing speed of the adder is not important, this delay may not be important. However, when the size of the bits is larger for example 32 or 64 bits used in multi-bit adders, or summation is required at a very high clock speed, this delay may become prohibitively large with the addition processes not being completed correctly within one clock cycle.

This unwanted delay time is called Propagation delay. Also another problem called "overflow" occurs when an n-bit adder adds two parallel numbers together whose sum is greater than or equal to 2^{n}

One solution is to generate the carry-input signals directly from the A and B inputs rather than using the ripple arrangement above. This then produces another type of binary adder circuit called a Carry Look Ahead Binary Adder where the speed of the parallel adder can be greatly improved using carry-look ahead logic.

The advantage of carry look ahead adders is that the length of time a carry look ahead adder needs in order to produce the correct SUM is independent of the number of data bits used in the operation, unlike the cycle time a parallel ripple adder needs to complete the SUM which is a function of the total number of bits in the addend.

4-bit full adder circuits with carry look ahead features are available as standard IC packages in the form of the TTL 4-bit binary adder 74LS83 or the 74LS283 and the CMOS 4008 which can add together two 4-bit binary numbers and generate a SUM and a CARRY output as shown.

74LS83 Logic Symbol

Summary of Binary Adders

We have seen in this tutorial about Binary Adders that adder circuits can be used to "add" together two binary numbers producing a "carry-out". In its most basic form, adders can be made from connecting together an Exclusive-OR gate with an AND gate to produce a Half Adder circuit. Two half adders can the be combined to produce a Full Adder.

There are a number of 4-bit full-adder ICs available such as the 74LS283 and CD4008. which will add two 4-bit binary number and provide an additional input carry bit, as well as an output carry bit, so you can cascade them together to produce 8-bit, 12-bit, 16-bit, adders but the carry propagation delay can be a major issue in large n-bit ripple adders.

Binary Subtractor

The Binary Subtractor is another type of combinational arithmetic circuit that produces an output which is the subtraction of two binary numbers

As their name implies, a Binary Subtractor is a decision making circuit that subtracts two binary numbers from each other, for example, $\mathrm{X}-\mathrm{Y}$ to find the resulting difference between the two numbers.

Unlike the Binary Adder which produces a SUM and a CARRY bit when two binary numbers are added together, the binary subtractor produces a DIFFERENCE, D by using a BORROW bit, B from the previous column. Then obviously, the operation of subtraction is the opposite to that of addition.

We learnt from our maths lessons at school that the minus sign, "-" is used for a subtraction calculation, and when one number is subtracted from another, a borrow is required if the subtrahend is greater than the minuend. Consider the simple subtraction of the two denary (base 10) numbers below.

45 DIFFERENCE

We can not directly subtract 8 from 3 in the first column as 8 is greater than 3 , so we have to borrow a 10, the base number, from the next column and add it to the minuend to produce 13 minus 8 . This "borrowed" 10 is then return back to the subtrahend of the next column once the difference is found. Simple school math's, borrow a 10 if needed, find the difference and return the borrow.

The subtraction of one binary number from another is exactly the same idea as that for subtracting two decimal numbers but as the binary number system is a Base-2 numbering system which uses " 0 " and " 1 " as its two independent digits, large binary numbers which are to be subtracted from each other are therefore represented in terms of " 0 's" and " 1 's".

Binary Subtraction

Binary Subtraction can take many forms but the rules for subtraction are the same whichever process you use. As binary notation only has two digits, subtracting a " 0 " from a " 0 " or a " 1 " leaves the result unchanged as $0-0=0$ and $1-0=1$. Subtracting a " 1 " from a " 1 " results in a " 0 ", but subtracting a " 1 " from a " 0 " requires a borrow. In other words $0-1$ requires a borrow.

Binary Subtraction of Two Bits

0	1	1 (borrow) $1 \rightarrow 0$	
-0	-0	-1	-1
0	1	0	1

For the simple 1-bit subtraction problem above, if the borrow bit is ignored the result of their binary subtraction resembles that of an Exclusive-OR Gate. To prevent any confusion in this tutorial between a binary subtractor input labelled, B and the resulting borrow bit output from the binary subtractor also being labelled, B, we will label the two input bits as X for the minuend and Y for the subtrahend. Then the resulting truth table is the difference between the two input bits of a single binary subtractor is given as:

2-input Exclusive-OR Gate

Symbol	Truth Table		
	Y	X	Q
	0	0	0
	0	1	1
	1	0	1
	1	1	0

As with the Binary Adder, the difference between the two digits is only a " 1 " when these two inputs are not equal as given by the Ex-OR expression. However, we need an additional output to produce the borrow bit when input $X=0$ and $Y=1$. Unfortunately there are no standard logic gates that will produce an output for this particular combination of X and Y inputs.

But we know that an AND Gate produces an output "1" when both of its inputs X and Y are "1" (HIGH) so if we use an inverter or NOT Gate to complement the input X before it is fed to the ANDgate, we can produce the required borrow output when $\mathrm{X}=0$ and $\mathrm{Y}=1$ as shown below.

Then by combining the Exclusive-OR gate with the NOT-AND combination results in a simple digital binary subtractor circuit known commonly as the Half Subtractor as shown.

A Half Subtractor Circuit

A half subtractor is a logical circuit that performs a subtraction operation on two binary digits. The half subtractor produces a sum and a borrow bit for the next stage.

Half Subtractor with Borrow-out

Symbol	Truth Table			
	Y	X	DIFFERENCE	BORROW
	0	0	0	0
	0	1	1	0

From the truth table of the half subtractor we can see that the DIFFERENCE (D) output is the result of the Exclusive-OR gate and the Borrow-out (Bout) is the result of the NOTAND combination. Then the Boolean expression for a half subtractor is as follows.
For the DIFFERENCE bit:

$$
D=X X O R Y=X \oplus Y
$$

For the BORROW bit

$$
B=\text { not- } X \text { AND } Y=\bar{X} . Y
$$

If we compare the Boolean expressions of the half subtractor with a half adder, we can see that the two expressions for the SUM (adder) and DIFFERENCE (subtractor) are exactly the same and so they should be because of the Exclusive-OR gate function. The two Boolean expressions for the binary subtractor BORROW is also very similar to that for the adders CARRY. Then all that is needed to convert a half adder to a half subtractor is the inversion of the minuend input X.

One major disadvantage of the Half Subtractor circuit when used as a binary subtractor, is that there is no provision for a "Borrow-in" from the previous circuit when subtracting multiple data bits from each other. Then we need to produce what is called a "full binary subtractor" circuit to take into account this borrow-in input from a previous circuit.

A Full Binary Subtractor Circuit

The main difference between the Full Subtractor and the previous Half Subtractor circuit is that a full subtractor has three inputs. The two single bit data inputs X (minuend) and Y (subtrahend) the same as before plus an additional Borrow-in (B-in) input to receive the borrow generated by the subtraction process from a previous stage as shown below.

Full Subtractor Block Diagram

Then the combinational circuit of a "full subtractor" performs the operation of subtraction on three binary bits producing outputs for the difference D and borrow B -out. Just like the binary adder circuit, the full subtractor can also be thought of as two half subtractors connected together, with the first half subtractor passing its borrow to the second half subtractor as follows.

Full Subtractor Logic Diagram

As the full subtractor circuit above represents two half subtractors cascaded together, the truth table for the full subtractor will have eight different input combinations as there are three input variables, the data bits and the Borrow-in, $B_{I N}$ input. Also includes the difference output, D and the Borrow-out, Bout bit.

Full Subtractor Truth Table

| Symbol | Truth Table | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | B-in | Y | X | Diff. | B-out |
| 0 | 0 | 0 | 0 | 0 | |
| | 0 | 0 | 1 | 1 | 0 |

Then the Boolean expression for a full subtractor is as follows.
For the DIFFERENCE (D) bit:

$$
D=\left(\bar{X} \cdot \bar{Y} \cdot B_{I N}\right)+(\bar{X} \cdot Y \cdot \bar{B} \overline{I N})+(X \cdot \bar{Y} \cdot \bar{B} \overline{I N})+\left(X \cdot Y \cdot B_{I N}\right)
$$

which can be simplified too:

$$
D=(X O O B) \quad B_{I N}=(X \oplus Y) \oplus B_{I N}
$$

For the BORROW OUT (B $\mathrm{B}_{\text {OUT }}$) bit:

$$
B_{\text {OUT }}=\left(\bar{X} . \bar{Y} \cdot B_{I N}\right)+\left(\bar{X} . Y . \overline{B_{I N}}\right)+\left(\bar{X} . Y . B_{I N}\right)+\left(X . Y . B_{I N}\right)
$$

which will also simplify too:

$$
\left.B_{\text {OUT }}=\bar{X} A N D Y \text { OR }(X O B) B_{I N}=\bar{X} . Y+\overline{(X \oplus Y}\right) B_{I N}
$$

An n-bit Binary Subtractor

As with the binary adder, we can also have n number of 1-bit full binary subtractor connected or "cascaded" together to subtract two parallel n-bit numbers from each other. For example two 4bit binary numbers. We said before that the only difference between a full adder and a full subtractor was the inversion of one of the inputs.

So by using an n-bit adder and n number of inverters (NOT Gates), the process of subtraction becomes an addition as we can use two's complement notation on all the bits in the subtrahend and setting the carry input of the least significant bit to a logic "1" (HIGH).

Binary Subtractor using 2's Complement

Then we can use a 4-bit full-adder ICs such as the 74LS283 and CD4008 to perform subtraction simply by using two's complement on the subtrahend, B inputs as $X-Y$ is the same as saying, $X+(-Y)$ which equals X plus the two's complement of Y.

If we wanted to use the 4-bit adder for addition once again, all we would need to do is set the carry-in $\left(\mathrm{C}_{\mathrm{IN}}\right)$ input LOW at logic "0". Because we can use the 4 -bit adder IC such as the 74LS83 or 74LS283 as a full-adder or a full-subtractor they are available as a single adder/subtractor circuit with a single control input for selecting between the two operations.

Then the Boolean expression for a full subtractor is as follows.
For the DIFFERENCE (D) bit:

$$
\begin{aligned}
& D=(X(X O R) Y)(X O R) B_{I N}=(X \oplus Y) \oplus B_{I N} \\
& D=(X \oplus Y) \oplus B_{I N} \quad \text { which can be simplified too: } \\
& D=(\bar{X} \cdot Y+X \cdot \bar{Y}) \oplus B_{I N} \\
& D=(\bar{X} \cdot \bar{Y}+\bar{X} \cdot Y) B_{I N}+(\bar{X} \cdot Y+X \cdot \bar{Y}) \bar{B}_{I N} \\
& D=(\bar{X}+Y) \cdot(X+\bar{Y}) B_{I N}+\left(\bar{X} \cdot Y \cdot \bar{B}_{I N}+X \cdot \bar{Y} \cdot \bar{B}_{I N}\right) \\
& D=(\bar{X} \cdot \bar{X}+\bar{X} \cdot \bar{Y}+X \cdot Y+X \cdot \bar{Y}) \cdot B_{I N}+\left(\bar{X} \cdot Y \cdot \bar{B}_{I N}+X \cdot \bar{Y} \cdot \bar{B}_{I N}\right) \\
& D=(\bar{X} \cdot \bar{Y}+X \cdot Y) B_{I N}+\left(\bar{X} \cdot Y \cdot \bar{B}_{I N}+X \cdot \bar{Y} \cdot \bar{B}_{I N}\right) \\
& D=\left(\bar{X} \cdot \bar{Y} \cdot B_{I N}+X \cdot Y \cdot B_{I N}+\bar{X} \cdot Y \cdot \bar{B}_{I N}+X \cdot \bar{Y} \cdot \bar{B}_{I N}\right.
\end{aligned}
$$

A 4-bit Ripple Carry Adder

$$
\begin{aligned}
& \left.A_{3}-A_{0} \quad \begin{array}{llll}
\text { MSB } & 1 & 1 & 0
\end{array}\right) \\
& \left.B_{3}-B_{0}^{+\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)_{2}} \begin{array}{lll}
1 & 1 & 0
\end{array} 111\right)_{2} \quad\left(\begin{array}{lll}
(27) \\
(27)
\end{array}\right. \\
& A_{0}-A_{3}=1 \text { st } 4 \text {-bit number } \\
& \text { MSB }
\end{aligned}
$$

A 4-bit Subractor case- 2 A >B (1's Compliment method)

A 4-bit Subractor case- 2 A $<$ B ('s's Compliment method)

$$
\begin{aligned}
& \text { Inverting the sum }(\overline{1} \overline{1} \overline{0} \overline{1})_{2} \\
& \text { Result -> }-(10){ }_{2} \\
& A_{0}-A_{3}=1 \text { st } 4 \text {-bit number } \\
& \mathrm{B}_{0}-\mathrm{B}_{3}=2 \text { nd } 4 \text {-bit number } \\
& \text { LB }
\end{aligned}
$$

(2nd Compliment with -eve sign bit)
Inverting the sum
($\overline{1}$
$\overline{1}$
$\overline{0}$
$\overline{1})_{2}$
putting a negative sign

- 0
0
1
$0)_{2}$

